Nonlinear Schrödinger equation on a circle
نویسندگان
چکیده
منابع مشابه
Nonlinear Schrödinger Equation on Real Hyperbolic Spaces
We consider the Schrödinger equation with no radial assumption on real hyperbolic spaces. We obtain sharp dispersive and Strichartz estimates for a large family of admissible pairs. As a first consequence, we obtain strong wellposedness results for NLS. Specifically, for small intial data, we prove L 2 and H 1 global wellposedness for any subcritical nonlinearity (in contrast with the flat case...
متن کاملThe Nonlinear Schrödinger Equation on the Interval
Let q(x, t) satisfy the Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation on the finite interval, 0 < x < L, with q 0 (x) = q(x, 0), g 0 (t) = q(0, t), f 0 (t) = q(L, t). Let g 1 (t) and f 1 (t) denote the unknown boundary values q x (0, t) and q x (L, t), respectively. We first show that these unknown functions can be expressed in terms of the given initial and bo...
متن کاملIntegrable nonlocal nonlinear Schrödinger equation.
A new integrable nonlocal nonlinear Schrödinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contras...
متن کاملSolution of a Nonlinear Schrödinger Equation
A slightly modified variant of the cubic periodic one-dimensional nonlinear Schrödinger equation is shown to be well-posed, in a relatively weak sense, in certain function spaces wider than L. Solutions are constructed as sums of infinite series of multilinear operators applied to initial data; no fixed point argument or energy inequality are used.
متن کاملOn a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 1995
ISSN: 0163-1829,1095-3795
DOI: 10.1103/physrevb.52.11231